Robust oscillations within the interlocked feedback model of Drosophila circadian rhythm.
نویسندگان
چکیده
A mechanism for generating circadian rhythms has been of major interest in recent years. After the discovery of per and tim, a model with a simple feedback loop involving per and tim has been proposed. However, it is recognized that the simple feedback model cannot account for phenotypes generated by various mutants. A recent report by Glossop, Lyons & Hardin [Science286, 766 (1999)] on Drosophila suggests involvement of another feedback loop by dClk that is interlocked with per-tim feedback loop. In order to examine whether interlocked feedback loops can be a basic mechanism for circadian rhythms, a mathematical model was created and examined. Through extensive simulation and mathematical analysis, it was revealed that the interlocked feedback model accounts for the observations that are not explained by the simple feedback model. Moreover, the interlocked feedback model has robust properties in oscillations.
منابع مشابه
Modeling feedback loops of the Mammalian circadian oscillator.
The suprachiasmatic nucleus governs daily variations of physiology and behavior in mammals. Within single neurons, interlocked transcriptional/translational feedback loops generate circadian rhythms on the molecular level. We present a mathematical model that reflects the essential features of the mammalian circadian oscillator to characterize the differential roles of negative and positive fee...
متن کاملA Model of the Mammalian Circadian Oscillator Including the REV-ERBα Module
Many cellular and physiological processes have been shown to display a rhythm of about 24 hours. This so-called circadian rhythm is based on a system of interlocked negative and positive molecular feedback loops. Here we extend a previous model of the circadian oscillator by including REV-ERBα as an additional component. This new model will allow us to investigate the function of an additional ...
متن کاملReduced models of the circadian oscillators in Neurospora crassa and Drosophila melanogaster illustrate mechanistic similarities.
We have developed a reduced model representing feedback loops of transcriptional regulation underlying circadian rhythms in Neurospora crassa. The model contains two delay differential equations that describe the dynamics of two core gene products, FRQ and WCC. In a negative feedback loop, FRQ protein represses frq transcription by binding the white-collar complex (WCC), which consists of the W...
متن کاملA mathematical model for the intracellular circadian rhythm generator.
A mathematical model for the intracellular circadian rhythm generator has been studied, based on a negative feedback of protein products on the transcription rate of their genes. The study is an attempt at examining minimal but biologically realistic requirements for a negative molecular feedback loop involving considerably faster reactions, to produce (slow) circadian oscillations. The model i...
متن کاملModelling of circadian rhythms in Drosophila incorporating the interlocked PER/TIM and VRI/PDP1 feedback loops.
Circadian rhythms of gene activity, metabolism, physiology and behaviour are observed in all the eukaryotes and some prokaryotes. In this study, we present a model to represent the transcriptional regulatory network essential for the circadian rhythmicity in Drosophila. The model incorporates the transcriptional feedback loops revealed so far in the network of the circadian clock (PER/TIM and V...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of theoretical biology
دوره 210 4 شماره
صفحات -
تاریخ انتشار 2001